Breaking Rules in Math

Welcome!

A 270° Triangle

• What do a triangle's angles usually add up to?

A 270° Triangle

• What do a triangle's angles usually add up to? 180°

A 270° Triangle

• See Google maps

Does 11/2=12?

- Definition of division: a/b = q when $a = b \cdot q$
- Goal: show that $11 = 2 \cdot 12$

- Think about how the teacher counts when picking groups:
 1, 2, 3, 1, 2, 3, 1, 2, 3, ...
- We pick a limit (the modulus) and start over at the limit

- Think about how the teacher counts when picking groups:
 1, 2, 3, 1, 2, 3, 1, 2, 3, ...
- We pick a limit (the modulus) and start over at the limit

Mod 1:	0	0	0	0	0	0	
Mod 2:	0	1	0	1	0	1	
Mod 3:	0	1	2	0	1	2	
Mod 4:	0	1	2	3	0	1	

Addition is repeated counting

- Examples with modulus 13:
- $(1 + 2) \mod 13 = 3$
- $(12 + 1) \mod 13 = 0$
- $(11 + 5) \mod 13 = 3$

• Addition is repeated counting

- Examples with modulus 13:
- (1 + 2) mod 13 = 3
- $(12 + 1) \mod 13 = 0$
- (11 + 5) mod 13 = 3

- $(1+2) = 0 \cdot 13 + 3$
- $(12 + 1) = 1 \cdot 13 + 0$
- $(11 + 5) = 1 \cdot 13 + 3$

• Multiplcation works the same way

- Examples with modulus 13:
- $(3 \cdot 2) \mod 13 = 6$ (
- $(12 \cdot 3) \mod 13 = 10$

- A few more Examples with modulus 13:
- $7 \cdot 8 = ?$
- 9 · 4 = ?
- $6 \cdot (5 + 8) = ?$
- $4 + (11 \cdot 12) = ?$

- A few more Examples with modulus 13:
- $7 \cdot 8 = 56 = 4 \cdot 13 + 4 = 4$
- 9 · 4 = ?
- $6 \cdot (5 + 8) = ?$
- $4 + (11 \cdot 12) = ?$

- A few more Examples with modulus 13:
- $7 \cdot 8 = 56 = 4 \cdot 13 + 4 = 4$
- $9 \cdot 4 = 36 = 2 \cdot 13 + 10 = 10$
- $6 \cdot (5 + 8) = ?$
- $4 + (11 \cdot 12) = ?$

- A few more Examples with modulus 13:
- $7 \cdot 8 = 56 = 4 \cdot 13 + 4 = 4$
- $9 \cdot 4 = 36 = 2 \cdot 13 + 10 = 10$
- $6 \cdot (5 + 8) = 6 \cdot 0 = 0$
- $4 + (11 \cdot 12) = ?$

- A few more Examples with modulus 13:
- $7 \cdot 8 = 56 = 4 \cdot 13 + 4 = 4$
- $9 \cdot 4 = 36 = 2 \cdot 13 + 10 = 10$
- $6 \cdot (5 + 8) = 6 \cdot 0 = 0$
- $4 + (11 \cdot 12) = 4 + 2 = 6$

Does 11/2=12? Recap

- Definition of division: a/b = q when $b = a \cdot q$
- Goal: show that $11 = 2 \cdot 12 \pmod{13}$

$$2 \cdot 12 = 24 = 1 \cdot 13 + 11 = 11$$

- We have to get more specific (what kind of number)
- Let's start with the natural numbers: 0, 1, 2, 3,

- We have to get more specific (what kind of number)
- Let's start with the natural numbers: 0, 1, 2, 3,
- Not a very good answer to this question!

- What about integers? (..., -2, -1, 0, 1, 2, ...)
- No absolute answer, but we can compare them to naturals

Question: Are there more integers than naturals, fewer integers, or the same amount of each?

• We compare the sizes of the two collections by trying to match them together

First try:

Integers		-2	-1	0	1	2	
Naturals	?	?	?	0	1	2	

• We compare the sizes of the two collections by trying to match them together

Second try:

Integers	 -2	-1	0	1	2	
Naturals	 3	1	0	2	4	

• We compare the sizes of the two collections by trying to match them together

Second try:

Integers	0	-1	1	-2	2	
Naturals	0	1	2	3	4	

• What about decimals? (e.g. 0.6, 4, 3.33, 3.141592...)

- What about decimals? (e.g. 0.6, 4, 3.33, 3.141592...)
- There are too many! But how can we prove it?

- What about decimals? (e.g. 0.6, 4, 3.33, 3.141592...)
- There are too many! But how can we prove it?

We need to show that however you match them up, you missed at least one decimal number

- What about decimals? (e.g. 0.6, 4, 3.33, 3.141592...)
- Goal: find the missing number in the table

$N_0 =$	8	6	.4	3	2	
N ₁ =	0	2	.7	7	7	
N ₂ =	8	0	.0	0	0	
N ₃ =	0	0	.0	8	2	

- What about decimals? (e.g. 0.6, 4, 3.33, 3.141592...)
- Goal: find the missing number in the table

Missing: 9 $N_0 =$ 86.432... $N_1 =$ 02.777... $N_2 =$ 80.000... $N_3 =$ 00.082...

- What about decimals? (e.g. 0.6, 4, 3.33, 3.141592...)
- Goal: find the missing number in the table

Missing: 95

N ₀ =	8	6	.4	3	2	
N ₁ =	0	2	.7	7	7	
$N_{2} =$	8	0	.0	0	0	
N ₃ =	0	0	.0	8	2	

- What about decimals? (e.g. 0.6, 4, 3.33, 3.141592...)
- Goal: find the missing number in the table

Missing: 95.6

$N_0 =$	8	6	.4	3	2	
$N_1 =$	0	2	.7	7	7	
$N_2 =$	8	0	.0	0	0	
N ₃ =	0	0	.0	8	2	

- What about decimals? (e.g. 0.6, 4, 3.33, 3.141592...)
- Goal: find the missing number in the table

Missing: <u>95.66</u>...

N ₀ =	8	6	.4	3	2	
N ₁ =	0	2	.7	7	7	
$N_{2} =$	8	0	.0	0	0	
N ₃ =	0	0	.0	8	2	

- Bonus: what about fractions? (e.g. 1/3, -5/12, 10/4)
- More than naturals? Less than decimals?

- Bonus: what about fractions? (e.g. 1/3, -5/12, 10/4)
- Same number of fractions as naturals!
- Decimals (real numbers) can go on forever, which is why there are more

Class problems

Bonus: Commutativity

Define a + b = a - b

Example: (4 + '5) = -1but (5 + '4) = 1

Bonus: Associativity

Define $a + b = 2 \cdot a + b$

Example:
$$(4 + 2) + 3 = 10 + 3 = 23$$

but $4 + (2 + 3) = 4 + 7 = 15$.